Soil and Crop/Tree Segmentation from Remotely Sensed Data by using Digital Surface Models
نویسندگان
چکیده
The increased availability of high resolution remote sensor data for precision agriculture 1 applications permits users to aquire deeper and more relevant knowledge about crops states that lead 2 inevitably to better decisions. The algorithm libraries being developed and evolved around these 3 applications rely on multi-spectral or hyper-spectral data acquired by using manned or unmanned 4 platforms. The current state of the art makes thorough use of vegetational indicies to guide the 5 operational management of agricultural land plots. One of the most challenging sub-problems is 6 to correctly identify and separate crop from soil. Thresholding techniques based on Normalized 7 Difference Vegetation Index (NDVI) or other such similar metrics have the advantage of being simple, 8 easy to read transformations of the data packed with useful information. Obvious difficulties arise 9 when crop/tree and soil have similar spectral responses as in case of grass filled areas in vineyards. 10 In this case grass and canopy are close in terms of NDVI values and thresholding techniques will 11 generally fail. Radiometric approaches could be integrated or replaced by a geometric approach that 12 is based on terrain data like Digital Surface Models (DSMs). These models are one of the ouputs 13 of orthorectification engines usually present in data acquired by using unmanned platforms. In 14 this paper we present two approaches based on DSM that are able to segment crop/tree from soil 15 while over gradient terrain. The DSM data are processed through a two dimensional data slicing or 16 reduction technique. Each slice is separately processed as a one dimensional time series to derive the 17 terrain and tree structures separately, here interpreted as object probability densities. In particular 18 the first approach is a Cartesian grid rasterization (CARSCAN) of the terrain and the second is its 19 immediate generalisation or radial grid rasterization of the DSM model (FANSCAN). The FANSCAN 20 recovers information from the original image at greater frequencies on the Fourier plane. These 21 approaches enable the identification of crop/tree from soil in case of slopes or hilly terrain without 22 any constraint on the displacement / direction of plant/tree row. The proposed algorithm uses pure 23 DSM information even if it is possible to fuse its output with other classifiers. 24
منابع مشابه
Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملIrrigation Scheduling Using Remote Sensing Data Assimilation Approach
Remote sensing and crop growth models have enhanced our ability to understand soil water balance in irrigated agriculture. However, limited efforts have been made to adopt data assimilation methodologies in these linked models that use stochastic parameter estimation with genetic algorithm (GA) to improve irrigation scheduling. In this study, an innovative irrigation scheduling technique, based...
متن کاملSegmentation of High-resolution Remotely Sensed Data - Concepts, Applications and Problems
Segmentation algorithms have already been recognized as a valuable and complementary approach that similar to human operators perform a region-based rather than a point-based evaluation of high-resolution and multi-source remotely sensed data. Goal of this paper is to summarize the state-of-the-art of respective segmentation methods by describing the underlying concepts which are rather complex...
متن کاملVerification Using Remotely Sensed Data
Soil moisture is an important hydrologic variable that controls various land surface processes. In spite of its importance to agriculture and drought monitoring, soil moisture information is not widely available on a regional scale. However, long-term soil moisture information is essential for agricultural drought monitoring and crop yield prediction. The hydrologic model Soil and Water Assessm...
متن کاملRemotely Sensed Soil Moisture over Australia from AMSR-E
Soil moisture can significantly influence atmospheric evolution. However the soil moisture state predicted by land surface models, and subsequently used as the boundary condition in atmospheric models, is often unrealistic. New remote sensing technologies are able to observe surface soil moisture at the scales and coverage required by numerical weather prediction (NWP), and there is potential t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017